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APPROXIMATION OF DELAY SYSTEMS WITH APPLICATIONS

TO CONTROL AND IDENT IFICATION

H. T. Banks

Abstract: We discuss approximation ideas for functional differential

equations and how these ideas can be employed in optimal control and

parameter estimation problems . Two specific schemes are described ,

one based on integral averages of the function being approximated ,

the other based on best L
1~~~

pline approximations. An example

illustrating numerical behavior of these schemes applied to an optimal

control problem is presented .

~ACCESSION for

NTIS White Sectlofl~~
DOC ~~ Section 0
UNANNO~” !~~ 0
JUSTI FICr- .

Ii
D~TRlBoT~ I~Y~iA8IlITf cODES

bh~ A~At L. or SPW!~

78 12 04 .061

_ _  _ _ _ _ _  - - -



- :~~
. — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A i ’l ’RO X I.f’IA f iON 1) • iEI ~AY S IS1L~1S
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CONTR O L AN D JD E N T I F I CA TI ON

• H. T. Ba nks *
L e f s c h c t z  Center  for  Dynamical  System s

D i v i s i o n  of App l i ed M a t h em a t i c s
Brown U n i v e r s i t y

Providence , Rhode Is land - . 02912

INTRODUCTION

In this p r e s e n t a t i o n , we shall  d I SCUS S a p p r o x i m at ion ~dca s tha t

have proved useful in develop ing methods  for  so lv ing  o p t i m a l  con t ro l
and parameter identification problems involving delay systems. We - -

shall  focus on l inear  delay systems in our d i scuss ions  a l t h o u g h , as we
• shal l  l a te r  ind ica te , many of the ideas and r e su l t s  are v a l i d  f o r

problem s wi th  nonl inear  systems .
The approximation resul t s  we describe below are  based on an ab-

s~ ract f o r m u l a t i o n  due to Trot ter  and JC ato dea l ing  wi th  approxima tions

to semigroups  of l inear  opera tors .  In order to make use of these
approximation theorems , it is necessary to re formula te  our delay sys~~~u
as an abs t rac t  system in an appropr ia te  I l i lb er t  space.  To this cnd ,

• consider  the delay system -

*(t )  = L(x t ) + f(t) 0 < t <
- (1)

S 

x (O)  = ii , x0 
=

where , for ~P continuous on [-r , O]

V f o
L(~p) = 

~ 
A .~~( _ t ~ ) + j A(O)iP(0)dO (2)

i=O i -r

w i t h  A . ,  A ( O )  g iven n x 21 matr ices  and 0 = t
0 

< - - -  ~ < r .

For 0 < t < t 1, the func t ion  0 x~ ( 6 ) ,  -r < ~ < 0 , is g i v e n  by
xt(O) 

= x ( t + O )  whenever x is def ined on [ -r , t 1]
With  an appropr ia te  i n t e rp re t a t i on  of the operator  L , one can

defã~ne solutions x ( i . e .  solut ions-exis .t )  to (1) corresponding to
in i t ia l  data (~,4) in 2 x L 2 ( [ - r , 0 ] , R~) E X L~~( - r , 0) and
per turba t ions  f in L~ (0,t1) as functions which satisfy the initial

*This research was supported in part  by the N a t iona l  Science Founda t ion
~i ru1er NS F -Mr. S 7 8 - I S S S R  and in  par t  by the A i r  Force  O f f i c e  o~
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S conditions in (1), are absoiutel~’ :ontinuous on (~u ,t,) and satisf y

the differential equation in (1) .~lmost everywhere on (0,t1) . Otie
can thus define a homogeneous solution semigrou~~of operators

S( t): Z -
~~ Z, t > 0, by

S(t)(r~~) ( x ( t ; n ,
~~

) , x
~

(n,
~

) )

where x is the solution of (1) with f 0. It is not difficult to

argue that this defines a strongly continuous semigroup (C0-semi group) 
S

of linear operators with infinitesima l generator .~~~~~ (i.e.

S(t) _ e ~~
t) on 9(~ ’) {(~ (0),~ )l~ 

is absolutely continuous

wi th ~ in L~ (-r ,0)} given by

= (L(~),~ ). (3)

This semigroup can be used to give an abstract “variation of para-
• iaeters” representation for solutions of (1) in Z. That is , suppose

one defines for (n,~~) c Z and f ~ L~ (0,t1) the function

- t - ~. z(t;ri ,4’,f )  by

- r t

• z(t;ri ,cP, f )  = S(t)(~ ,~ ) + I S(t-a)(f(a),0)de. (4)
• 

~ 
J o

Then one can argue (see [21) an equivalence between (1) and ( 4 ) .  Mor
precisely, one has that -

z(t;n ,~~,f) = (x(t;i~~ ,f), x~
(fl ,

~~
,f))

for t > 0 - where z is given by (4) and t -
~
- x(t ;fl,Q,f) is the

* solution of (1).
For r~ = ~ (O) and ~,f sufficiently smooth , it turns out that (d)

is equivalent to an ordinary differential equation (ODE) in the

h u b e r t  space Z w h i c h  m ay be written

i(t) = ..~‘z(t) + (f(t),0)
(5)

z (O)  = (~(0),~p).

We seek to approximate (4) (or (5)) by considering approximations

in finite dimensional subspaces (where we will obtain finite

dimensional ODE ’s). The fundamental approximation result from semi-
group theory that we employ can be stated roughly as “if ~~~

- - -~~ 
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S 
•~ in  ~ proper sense , t h . n  c • in some sense ’. One version if

th is  resul t  due to T r o t t e r - K a t e  ~l3] can be s t a t e d  iii p recise  ~crms
as fol lows . S

I Theorem . Suppose are generators of C 0 -s e m ig ro ups (s N (t.) ),
{S(t) } on Z satisfying :

S (i) there exist M and ~ > 0 such t h a t

IS
N(t) ( < Me~~ , ~S(t) < Mc~~~,

(ii) there exists a dense subset 9 of Z such that
as N -

~~ for each z ~ 9,

(iii) there exist a complex number with real p ar t  l a r g e r  t h a i i

~3 such that (~~ -A 0I)9 is dense in Z.

Then SN (t)z + S(t)z as N -
~~ for every z c Z , uniformly i.n t on

• compact intervals.

We wish to emphasize that use of this semigroup formulation is
- 

mainly for convenience in proving convergence of particular schemes.
• Just as in the case of differencing schemes for solution of partial

differential equations , the semigroup formulation is not an essential

aspect in the development of numerical methods. Rather , the

p a r t i c u l a r  choice of the subspaces and the app rox ima t ing  operatc~~
is the question of utmost importance.

In both the control and identification applications discussed here ,
• • the basic system to be considered is (1) or , equ iva len t ly  ( 4 ) .  Once

we have chosen and sat isf ying the T r o t t e r -K a t o  hypothescs ,
we shall also employ (orthogonal) projections of Z onto Z~

’ to

then approximate equation (4) by
S 

S t t
• zN (t) = SN(t)PN (n ,q) + J SN ( t_ a)P N ( f ( q ) , O)d c r .

0

- Since in the cases of interest to us ~~ will be bounded and

= e ~, we may equivalent ly  wr i te  th is  as

S 

• 

~~~~~ = ~~N z N ( t )  
-

+ PN (f( t) O )  (7)
zN(o) =

The convergence of sN to S wi l l  be su f f i c ien t  to guarantee a

I- - . S S

~ 
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desired convergence of solutions ~ (7) in both the  optinal cont ro l
and parameter identification problems detailed below.

S 

• 

OPTIMAL CONTROL PROBLEMS -

• The basic idea employed in control problems is a classical one
which is the basis for all Ritz type methods in approximation theory.
Suppose one has an optimal control problem (9) in a h u b e r t  space Z .

• By considering a sequence of approximating problems ( .9  ) on f i n i t e
dimensional subspaces Z , one seeks to obtain a sequence of more
easily solved problems whose solutions will approximate (i.e., S

approach in the limit as N -
~~ ~

) solutions of the  o r i g i n a l  problem

(9) . To be more specific , let f(t) = Bu(t) in ( 1) v h c re  B h;

an n ~ m matrix and u is to he chosen from some admissible class

~ C L~(0,t1) of control functions . The problem (9) mig ht typ ically 
S

consist of choosing u c  ~è so as to minimize (we do not d i s t i n g u i s h
between a vector and its transpose here and below)

- 

• t i
~(u) = x(t1)Qx (t1) 

+ 

I ~x(t)Wx(t) + u(t)Ru (t)}dt , (8)
• 0

where x is the solution of (1) corresponding to u and the matric c~
Q,W and R are symmetric with Q and W positive semi-definite , R

• positive definite. S

N . . nWriting solutions z of (7)  in terms of components  jn R and

L~ , ~
N 

= (x N,yN), and def ining

~
N (u) = xN (t1)QxN (t1) + J

tl~xN (t)wx N (t) + u ( t ) R u ( t f l d t , (9)

we take as our approximating problem 
~
9N~ 

that of minimizing ~
over °k subject to (7). -

S If we denote by ü.,tiN solutions to problems (9) and 
~
9N~

respectively, one can often use the Trotter-Kato results to guarantee

convergence of the to ~ in a desired sense. For example , in
• the case of ~~~~~~~~~ given by (8), (9) and ~ a convex closed set , one

can _argue that the optimal controls 1~JIN.. exist and are unique ,
ti in L2 as. N ~, and furthermore ~(ti

N) •>-~~(ti). Similar
results can be obtained for more general payoff functions in place of

(8) and (9). For details along with convergence argument’~ see [2],
[3) .

— — 
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iDL~~~~i 1CAi I ON PRO8L~ MS .

. In many .practicai  s i t u a t i o ns , ~t is i m p o r t a n t  to be able to f i t
a model described by equations such as (1) to data  obta ined  th rough
empirical efforts. In this case one has certain parameters , say
q c Rk, on which the system depends and which must be ~‘idontificd” or
“estimated” . For example suppose the operator L in (2)  depends on
parameters q (typically these may be some of the matrix coefficient

• terms in (2) and/or even a delay so that L might have the form

L(q;*) = A 0 (a)~~(0) + A 1(~~)~~( -t ) , q = 
(~~~~ , t ) ) .  One then mus t  i d e n t i f y q

in the system

~(t) = L (q;x~) + f ( t )
S ( J ( Y )

c(t) = Cx(t). -

Here c(t) represents the “observables ” for the system . One perturbs
the system (via f) and collects data 

~~~~ 
.,~~ at t i mes t 1,. .

(the 
~~ 

are observations for c(t1)). The problem is to choose ~
from some admissible parameter set • 2 so that it is a maximum

- likelihood estimator (MLE) or perhaps so that it minimizes

S M 2J(q)  = E ~c(t 1;q) - . (11)

Just as in the control problems , one r e fo rmula t e s  t h i s  identifica-

t. on problem as one in the abstract space 1 involving a system .~uch

~~ (4) (or ( 5) ) , and approximates by a sequence of identification
- • . N N N .

problems. That is , one has approximating systems (again , z = (x ,y  ) .~

= ~~
N (q)z N(t) + PN ( f ( t ) , O)

N N 
5 5 ( 12)

c ( t )  = Cx • ( t )

with observations (~~.} for {cN(t.;q)). One then chooses
c 2 C Rk so t1~at It is a MLE for  (12) or so that it minimizes

M
JN(q) = ~~ ~cN(t~ ;q) - 

~j I 2 , (13)
• i=l

depeYiding o~ how one has decided to seek ~ fit to data for the

origina l system . 
S

Under quite reasonable assumptions , one can use the Trotter-Kato
results to guarantee existence of a vector q (loosely speaking
urn ~N) so that ~~~~ 

is the limit of d’~
(
~

) in an appropriate

_ _ _ _— ~~~-- -S- .-— ~~~~~~ -
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sense and so tha t  ~j is  a MLE (

~~~~ 5 

~i m i n i m i z e r  fo r  ( 11) i f  (13) is US t~
in the approximating problems) for (10) wi th  data {

~~ ) .

NThere remains the basic question of how to choose 2 and d~
so that the needed Trotter-Kato hypotheses are satisfied and 5 most

• importantly, so tha t  efficient numerical schemes are genera ted .  1~c
shall discuss and compare two particular choices here ; the first we.
refer to as “averaging ” (AVE) approximations while the second involves
spline type (SPL) approximations. 

S

AV E RAGING APPROXI MATI ONS
For a given positive integer N , one J )nrt itlons the intc ~ va1

- -  • N( - r , 0) into N equal  s u bin t er v a l s  w i th  a pa rtition {. t~~~, t~ - j r / b .
and defines the characteristic functions

N . N
X = X M ~ 

, j = 2 , . . .  ,N , X 1 = X N p
[t t ) It  t~~Jj ’  j - l  1’ 0

One then takes to be the n (N+l) d i m e n s i o n a l  subspacc of
TheCined by

= { ( n ,~ ) (  n c R’~, ~~ 
= ~ ~~~~ v~ c i~~~} .  

S

j=l ~ ~
• . N NThe p r o j e c t i o n s  P : 2 -

~ Z are given by 
S

N
P ( n , 4 )  = (ii , ~3. ~~~

N ç t .  S

where d~. (N/r) ~ 
l~ (s)ds, the integral averages of ~ over the

3 J
t1
~ 

S

- S 3 .
partition subintervals. Finally, one defines the approximating
operator,s ~~N z by -

d
N
(n c) = (LN (n~~) ~~~~~~~ -

where ~ and 
S 

-

v N - N
L (n , 4 )  A 0 n + ~ - \~ $ •x . (-~~ •~ ) ~ia]. j—l ~h • j = i  ~

Ntj_ l 
Nwith I A ( 6 ) d O . With these definitions of ZN ,.~

V 2N one can
ti

- - 
_ _ _ _ _
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argue t h a t  the desired ‘I r o t t L -Ka to  hypotheses  are s~ t i s f i c~ and
moreover that  the convergence b eh a i lo r  necessary fo r u se in both
optimal control and identification problems is obtained (300 [ 3 ) , t8 1 )

SPLINE APPROXIMATIONS

For Kth order spline approximations , one de f in es  the suhspac e :  S

2N ((*
1%
~(O)~~,N)I ~N is a spline of order K on f-r ,0] w i th  knots

at t~ = -jr/N , j 0,1,.. .,N}. Letting be the orthogonal  pro-
jection of Z onto the closed subspace 2N , one can then def ine

• - - PNdPN’

where d 
- is given in (3).

For exam-pie , in the case of f i r s t  order  (“linear e lements ”)
- 
splines , the subspace is of dimension n ( N + l ) .  I f  one d e f i n e s
the usual “roof” functions for j = 0 , l , . . . , N and -r  < 0 < 0 by

S 

- (0
~~~~~1) t~~ 1 ~ 0 ~

e~~(0) = ( t .  -0 )  ‘ t~ < 0 <
3 r j-l j -  - j - l

0 elsewhere ,

N - • - N -where t~~~ = - j r / N  for all  j, then Z can be written

S. 
•

((~pN(0)~~1~N ) j  ~N = 
~ ~~~~ a~ c R~}.j=0 ~ ~

Of course , pN(~ ,~ ) q~N = (l~N(0)~~N) - where ~N is the solution to the
problem of m i n i m i z i n g  ~ - (ri ,~ fl over ~ in Z~ .

The condi t ions  for the T r o t t e r - K a t o  theorem can be v e r i f i e d  for
• these spline based approximat ions  and , in fac t , the a rgumen t s , using

fundamenta l  e s t ima tes  from sp line  analys is ,. are independent  o f the
order of splines used (see (6]).

For both the AVE and SPL approximations , one cati obtain estimates
on the convergence rates of the approximations . The AVE method is
esse~itial1y a first order method (error like 1/N) while one can argue
that the error in the Kth order SPL schem e behaves like liNk. In
actual practice our computations have revealed that the SPL methods
usually converge more rapidly than these estimates predict (see the
discussions in [6)) and indeed for both control and identificati on 
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F’1 prou.:.cins it appears tha t the “fir: o r d eL ” SPL iitetl d o f t e n  o f i e r  8

significant advantages over the /‘~ method at little co:;t in
additional. complexity with respect to imp l e m e n t a t i o n .  To parti ally
illustrate this feature and to indicate what one might typically cx-
pect in the way of convergence for these methods , we present just 0c.
of a number of control examples to which we have appl ied these ide ; :3

EXAMPLE (CONTROLLED OSCILLATOR WITh DELAYED DAMPING)

:The problem is to minimize

~(u) = Sx1(2)
2 

+ 

~ J u(t) 2 dt -

0

over u C = L 2 (O , 2) su b j ec t to

= x 2(t) (14)
x2(t) = -x 1( t )  - x2(t-l) 

+ u ( t ) , 0 < t <

and 5 5

x 1( O)  = 10

x2(O) 
= 0, -l < 0 < 0. 5

The system (14) is , of course , the vector formulation for the systen:

• 
dynamics y(t) + ‘( t -l )  + y(t) u(t). One can use necessary and

~~ufficient conditions (a maximum principle for delay system p r o b l e m sj
S 

to solve analytically this simple example. Upon doing so one finds
( see [ 3 ] ,  [5 ] )  the opt imal  control

‘5 sin (2-t )  + ( ‘S/ 2 ) ( 1 - t) s i n (t - 1)  0 < t < 1
- - sin(2-t) 1 < t < 2 ,

S where ‘5 is the solution of a certain algebraic c~iuation w i th

approximate value ‘5 2.5599. The optimal value of the p a y o f f  ~ i s

given by

5 

- = 4’ (i~) ~~~ 3.399119. 
5

We used a conjugate-gradient scheme to compute the solution of each
of the approximate control problems 

~
9N~ 

described above for both the
AVE and SPL schemes for several values of N. Denoting the optimal

- .  

_ _

- --- ~~~~ -~~--~ -
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~~~~~~~ 
of the p a y o f f s  by and re-

- 

- : spectively, we give a representative sample of our numerical finding~
in tabular form .

N —N —N — —N ~—N —

‘~‘AVE ~AVE~~ ‘~‘SPL I~~5pL~~~I

- 
5 

4 2. 15154 1 .2475  3 .53549  .1363
5 8 2.67110 .7280 3.43454 .0354

16 3 . 0 0 3 5 6 .3955  3 . 4 0 8 5 7  .0094
3 2  3 . 1 9 2 9 8  . 2 06 1  3 . 4 0 1 9 3  . 0 0 2 8

We note that the convergence of ~-N to ~ is like 1/N ~hi1c

• tha.t of 
~SPL is 1/N . A graph  compar ing  several of the opt im al

S controls U
~PL,

U
~VE with the solution ~ of the original problem is

given in Figure 1. One also has for this example that

USPL I L 
-

~
- ii like 1/N2 while ~N -

~ ~~ is like 1/N .

We complete our presentation with brief mention of related results

that have been obtained throi~gh efforts by our group at Brown

University and our associates and colleagues.
The basic abstract framework employing the Trotter- Kato theorem

to ensure convergence in optimization problems for delay systems was

given in [2]. A detailed -investigation of the A\TE app rox ima t ion  and
its use in linear system control problems along with several solved

examples can be found in [3]. Additional examples of solved control

problems along with  use of the AVE scheme on these examples may be

found in [5] . An extension of the theory of [2], [3) to treat control
problems w ith nonlinear systems along with related nummerical findings
are given in [1] . In e f f o r t s  to f ind a l t e rnat ives  to the AVE scheme ,
Burn s and Cl i f f  discuss in [7 1 a scheme involving p iecewise  l ine5i~
approximations combined with AVE type ideas. Spl ine  approx ima t ions  in
the context of a general framework suitable for use in control and -

S 
identification problems are developed in [6] . More r ecen t ly ,  Kapp el

• and Schappacher [10]- have used interpolating splines for an approxima-

tion method that is applicable to nonline~ar retarded equations while

Kunisch (12] has developed the AVE scheme for nonlinear neutral func-

tional differential equations. Kunisch ’s development is in the spirit

of the earlier results of Kappel and Schappacher [9) who formulated a

H “local semigroup” approach to handle AVE approximations for locally

Lipschitz nonlinear retarded equations. In [8], Burns and Cliff

~~~~~~~~~~~~~ 2I~~~~~~~~J I
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discuss the USC of the AVI- sch.emc in i d e n t i f i c a ti o n  pt -~~;lein s t~h i ) e
results for SPL based identification methods arc presented in [4] -

A ll of the above schemes , whether for AVE or SPL , le a d  t o the

approximation of a differential equation (e.g. (5)) in the Hi]hert

- 

. space Z by a finite-dimensional ODE . To a c t u a l l y  use these  in eth ~~~
in computations , one needs a second approximation (e.g. a staniarJ
Runga-Kutta or predictor-corrector scheme) to solve the approx ir~~t~~i,.
ODE ’s. A natural question that arises is “why not go directi) from
the or iginal  ( i n f i n i t e  d imens iona l )  delay system to a d i f f er e a L L
equation?” Reber , in [14], (15], investigates this question i~ the
spirit of the functional analytic methods of the papers c i ted above
( f ac to r  space ideas-see  ( i l l - a r e  employed in pl ace of the  T r o t t e r - K a t u
semi group r e s u l t s ) .  B r i e f l y ,  Reb er  considers qu~ tc gene ra l  n o n -
autonomous linear delay equations and shows t h a t  they can be f o r m u l a t L d
as an abs t rac t  system in Z

S S Tz = E (~ , f)  ( l S )

where

ç t 
S

S 

(T z ) ( t )  z (t )  -

.1

t S 
S

~(c ,f)(t) c + J ( f (e ) , 0)d ~ .
t

-~~ 0

i-here ~ is the in i t i a l  data (n,~) and f is the perturhing func-

tion as in (1) or (5) . Equation (15) is then approx imated  by

. ~N~ N ~~~~~~~~~~~

S 
•

~~ 
where TN is essentially a first order difference opcr~tor and the

~N 
corresponds to an AVE type approximation in the s t a t e .  This  re-

sul ts  in a s imul taneous  d i s c ret i z a t i o n  of both “ s t a t e ” and “time ” .
Reber discusses the use (advantages vs. disadvantages) of these ideas
in ’tontrol problems ( theore t i ca l ly ,  the ~na 1ysis is s l i g h t l y  more
complicated than that for the simple “state” discretization - i.e. ODT

approximations - ideas discussed above ; numerically, implementation

on the computer is quite straightforward).

- ~‘~~-Ii :~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~ ~~~~~~~~
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